cot(arcsin(
$$-\frac{1}{4}$$
)) = $-\sqrt{15}$
 $\times = arcsin(-\frac{1}{4})$
Sin $\times = -\frac{1}{4}$ AND $\times \in \mathbb{Q}_4$

[a]

[b]

/ 12 PTS

SCORE:

Graph 2 periods of the function $y = -6\cos(\frac{2}{3}x + \frac{7\pi}{3}) - 2$.

SCORE: /16 PTS

X=-14.3=-14

Find the coordinates of the 9 points discussed in lecture, corresponding to 2 complete periods, starting at the phase shift.

Label all x – and y – values for the 9 points on the appropriate axes, using a consistent scale for each axis.

TOP = -2+6=4 MIDDLE y=-2 AMPLITUDE |-61=6

PERIOD = 27 = 27. = 37

$$(\frac{-14\pi}{4}, \frac{-8}{-8})$$
 $\frac{1}{4}$ PERIOD = $\frac{3\pi}{4}$

POINTS:

$$\left(\begin{array}{cccc} -\frac{8\pi}{4} & , & 4 \\ \end{array}\right)$$
 $\left(\begin{array}{cccc} -\frac{5\pi}{4} & , & -2 \\ \end{array}\right)$

$$(\underline{4},\underline{-2})$$

$$(\frac{2}{4},\frac{-2}{})$$

$$(\frac{107}{4}, \frac{-8}{8})$$

Fill in the blanks. Write "DNE" if the question has no answer.

SCORE: /32 PTS

The equations of the asymptotes of
$$f(x) = \csc x$$
 are

[d]

[b]

The equations of the asymptotes of
$$f(x) = \arctan x$$
 are
$$\underline{y} = \pm \frac{71}{2}.$$

X=n∏,neZ

 $\cos^{-1}(-\frac{\sqrt{2}}{2}) = \frac{3\pi}{4}$

 $\arctan(-1) = -\frac{T}{4}$

$$[g] \tan^{-1}\sqrt{3} = \underline{\frac{1}{3}}.$$

As $x \to 0^-$, $\cot x \to -\infty$.

$$\arccos(\cos\frac{5\pi}{4}) = \frac{377}{4}$$

[i]
$$\tan(\arctan 3) = 3$$

$$\arccos(\cos\frac{5\pi}{4}) = \frac{371}{4}$$

$$[i] \quad \tan(\arctan 3) = 3$$

[q]

[c]

[e]

$$\sin(\sin^{-1}3) = \boxed{\bigcirc}$$

[k]
$$\cos^{-1}(\cos\frac{5\pi}{6}) = \frac{5\pi}{6}$$
. [l] $\sin(\sin^{-1}3) = \frac{1}{2}$. [m] The domain of $f(x) = \tan x$ is $x \neq \frac{\pi}{2} + n\pi$, $y \in \mathcal{H}[n]$ The range of $f(x) = \arccos x$

The range of
$$f(x) = \arccos x$$
 is $\boxed{\bigcirc, \pi \rceil}$.

[0]

As
$$x \to \frac{\pi^+}{2}$$
, $\sec x \to - \mathcal{A}$.

A ship leaves port at noon and heads due west at 20 nautical miles per hour.

SCORE: ____/ 14 PTS

At 2pm, the ship changes course to a bearing of 306° .

[a] How far is the ship from port at 3pm? (Round your answer to the nearest integer.)

[b] What is the bearing of the ship from port at 3pm? Your final answer should be a single number (ie. "bearing of ______"").

(Round your answer to the nearest degree.)

The depth of the water at the end of a dock is a sinusoidal function.

At 4am, the water has its maximum depth of 11.3 feet, and the depth decreases until, and at 10am, the water has its minimum depth of 0.1 feet.

[a] Find an equation for the depth of the water at
$$t$$
 hours after midnight. $+ \cos t$

MIDDLE = $\frac{11.3 + 0.1}{2} = 5.7 = D$

AMPLITUDE =
$$\frac{11.3-0.1}{2} = 5.6 = |A|$$